

Reg		g. No:]			
SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR																
							(AU	TONC	OMOU	(S)	_		_			
		B.Te	ch II `	Year	I Sem	ester	· Sup	pleme	entary		mina	tions	Aug	ust-20	22	
						ľ		il Eng	HA N							
T	Time: 3 hours Ma														x. Mark	s: 60
					(Ans	wer a	ll Five	Units	5 x 12	2 = 60) Marl	ks)				
								UNI	Г-І			,				
1	a Calculate the capillary rise in a glass tube of 2.5 mm diameter when immersed													L4	6M	
	vertically in i) water ii) mercury take surface tension 0.0725 N/m for water and															
	0.52 N/m for mercury in contact with air. The specific gravity of mercury is															
	13.band angle of contact 130°?b Derive expression for surface tension on liquid dreplet and seen hubble												т э	M		
	D	Derive expression for surface tension on inquid droplet and soap bubble.												LZ	OIVI	
2	a	Define Manometer. Briefly explain the types of manometers in detail?											L1	6M		
	b	A hydraul	ic pre	ess has	a ran	n of 20) cm c	liamet	er and	plung	ger of	3 cm	diame	eter. It	L4	6M
is used for lifting a weight of 30 KN. Find the force required at the plunge											unger.					
								UNI	[-II							
3	a	Obtain an	expre	ssion	for co	ntinuit	y equa	ation f	or a th	iree - o	limen	sional	flow.		L2	8M
	b	The veloc	ity po	tential	funct	10n 1s	gıven	by Ø	$= 5(x_2)$	2 - y2). Calc	culate	the ve	elocity	L3	4M
Components at the point (4, 5).																
4	a	State Berr	noulli'	's theo	orem f	or stea	ady flo	ow of	an inc	ompre	essible	fluid	. Deri	ve the	L3	6M
		expression for Bernoulli's theorem from first principle and state the assumpt											nption			
		made for s	such a	deriva	ation.							_				
	b	What is fl	owing	g throu	igh a p	oipe of	5 cm	diame	eter un	der a j	pressu	re of i	29.431 1	N/cm3	L4	6M
		(gauge) and with mean velocity of 2.0 m/s. Find the total head or total energy per unit weight of the water at a cross section which is 5 m above the datum line.														
		unit weigi		iie wat	er ut u		Seetile	UNIT	'-III	in uo		e uut	••••	0.		
5	a	Derive the	e exp	ressio	n for	head	loss i	n pipe	es due	to si	ıdden	enlar	gemei	nt and	L3	6M
		sudden co	ntract	ion for	rmula.			11					C			
	b	A horizon	ntal pi	pe of	diame	eter 50)0mm	is su	ddenly	cont	racted	to a	diame	eter of	L4	6M
		250mm. T	The pr	essure	e inten	sity in	the la	arger a	and sn	naller	pipe i	s give	n as 1	13.734		
		$N/CIII_2$ and 11.77_2 $N/CIII_2$ respectively. Find the head lost due to contract: CC is 0.63.											tion 11			
		CC 13 0.01	J.					OI	ł							
6	a	The difference in water surface levels in two tanks which are connected by three												L4	8M	
		pipes in s	series	of lea	ngths	300m	, 170	m and	l 210r	n and	diam	eters	of 30)0mm,		
		200mm and 400mm respectively is 4m. Determine the rate of flow of water if										ater if				
		coefficien	ts of	tricti	on ar	e 0.0	05, 0.	.0052, es	0.004	48 re	spectr	vely,	consi	dering		
	b	Derive the	e expr	ession	for flo	ow thr	ough	cs paralle	el pipe	s.					L3	4 M

Q.P. Code: 16CE106

9

- 7 a A horizontal venture meter with 30cm diameter inlet and 10cm throat is used for L4 6M measuring the flow of water through a pipeline. If pressure in pipe is 1.5kpa and the vacuum pressure at the throat is 40cm of mercury, calculate the rate of flow. It may be presumed that 5% of differential head is lost between the pipe main and the throat section. Also make calculations for the discharge co-efficient take specific weight of water = 10kN/m³
 - b What is a Mouth Piece? What are the advantages are providing the Mouth Piece? L1 6M How the Mouth Piece are classified?

OR

- 8 a Explain the principle of venturimeter with neat sketch? Also derive the L1 6M expression of rate of flow of Fluid through on it.
 - b Water flows over a rectangular weir 1m wide at a depth of 150mm and L4 6M afterwards passes through a triangular right-angled weir. Taking Cd for the rectangular and triangular weir as 0.62 and 0.59 respectively find the depth over a triangular weir.

UNIT-V

a Derive Hagen Poiseuille equation.
b Calculate: i) The average velocity and ii) The discharge for an oil of viscosity
0.02 Ns/m2 flowing between two stationary plates 1 m wide maintained 10 mm apart. The velocity midway between the plates is 2 m/s.

OR

10 a Explain the Reynolds's experiment with neat sketch.L16Mb Define Boundary layer and derive the expression for energy thickness.L16M

*** END ***